Department of Computer Science & Engineering
University of Nevada, Reno

ARIA: Administration, Registration, and Information Assistant

K.R.EW.
Renee Iinuma
Wesley Kepke

Ernest Landrito

Kyle Lee

Instructor: Dr. Sergiu Dascalu
Advisor: Dr. Frederick Harris (UNR CSE)
External Advisor: Cindy Harris (NNMTA)

March 18, 2016

Abstract

The goal of ARIA is to create a WordPress plugin that assists the Northern Nevada
Music Teachers Association (NNMTA) with the registration, scheduling, and
organization of their music competitions. This project is meaningful because it
significantly reduces the amount of overhead that NNMTA personnel spend in regards
to the preparation of their music competitions. Moreover, this plugin automates tasks
and alleviates errors that would otherwise take NNMTA members hours to complete
and validate. Once implemented, the NNMTA will be presented with a robust and
systematic manner of hosting music competitions for years to come. Furthermore, ARIA
is constructed in a generalizable format such that the plugin can be used in situations
other than music competitions, thus exposing ARIA’s functionality to other sectors.

Introduction

The chief objective of ARIA is to develop a WordPress plugin that alleviates the current
hassles that the NNMTA currently undergoes when hosting a music competition. From a
high level perspective, ARIA’s core components involve music uploading/downloading,
competition creation and student/teacher registration, competition scheduling, and the
competition document production module.

At the submission date for project part two, music uploading/downloading was
complete and development efforts were directed primarily towards the competition
creation and student/teacher registration component. Since then, the aforementioned
component has undergone significant work and is now close to completion. Moreover,
ARIA’s developers have invested a notable amount of time finalizing the details of the
scheduling algorithm and an initial implementation is now available. The team is
beginning to perform stringent tests on the scheduling component using past
competition data so that bugs can be identified. Finally, preliminary research into how
to produce RTF documents for competitions is underway.

Fortunately, there have been no major changes to ARIA. The requirements for ARTA
were crafted with detail by Mrs. Harris and ARIA’s developers have been following her
documentation closely. Small changes, such as the need to add a new field in the
competition creation form and ensuring that this new piece of data flows to it’s proper
location in the plugin, appear to be the changes that repeatedly occur. Finally, the team
has begun practicing a new form of version control that reduces the amount of merge

conflicts and allows team members to deviate the work in a much more organized
manner.

Perhaps the most difficult challenge that the group has faced in regards to development
is working with Gravity Forms, a plugin that serves the purpose of dynamically creating
forms that allows users to submit information. The documentation of this rather new
plugin is sufficiently lacking in detail and as a result, ARIA’s developers had to
experiment with the functionality provided by the Gravity Forms API in order to
successfully finish the implementation of the competition creation and student/teacher
registration component. The previously mentioned phase of experimentation invoked a
major setback for ARIA and at the time, there seemed to not be a solution to the
problem that ARIA’s developers were experiencing. Fortunately, the team found a
workaround and was able to implement the solution quickly, thus allowing the team to
gain traction and work on ensuing components.

Design Model

Architectural Design

e High-level structural diagram

o The following figure represents a high-level structural diagram of ARIA.
The user interacts with ARIA through the GUI subsystem, which provides
a gateway to the functionality of the other subsystems. Specifically, the
GUI subsystem interacts with the competition, registration, music, and
document subsystems. Continuing, the registration subsystem interacts
with the scheduler subsystem and the document subsystem communicates
with the statistics subsystem. All subsystems that are considered as “ARIA
processing” (in the diagram) require the functionality provided by the
Gravity Forms plugin and the GUI subsystem needs the WordPress code to
operate as intended.

ARIA

High-Level Structural Diagram

S

Presentation

Iy

ARIA
Processing

Utility

«SUubsystem:
GuUI

Registration
Manager

Competition Q
Manager
«subsystems . wsubsystems
Competition Registration
Schedule /L
Manager (?
«SUubsystem:
Scheduler
Ww W
«SLDSystem: «SUbsystem: I —
WordPress Core Gravity Forms

Music Document
Manager Manager
A «SUDSystem:» «SUDSystems
Music Document
!
Statistics

Manager 'r(?

«SUDSystem:s
Statistics

e High-level behavioral diagram
o The following structure depicts the high-level flow of activity of ARIA.
Upon activation of the plugin, the chairman is able to select different

actions:

uploading music,

creating a competition,

scheduling a

competition, or generating documents. The activity diagrams for the
competition creation, student registration, teacher registration, and
document generation are depicted in the Detailed Design section. The
festival chairman has the option to repeat any of the main functions of
ARIA or to deactivate the plugin.

High-Level Behavioral Diagram
Precondition: WordPress must be installed
Postcondition: Necessary forms created

ARIA Plugin

Activated

Selects Music Upload

L J

Music Uploading

No

F 3

Chairman

Selects Document Generation

selects
action

Selects Competition
Creation

Is music Competition

Selects
Scheduling

uploaded? Creation 1

Student
Registration

Selected Scheduling

Teacher
Registration

Scheduling

Is competition
created?

Yes l

Selected
action

No

Selected
Document
Generation

h A

Document
Generation

Nao

End

Competition

Yes

Class Diagrams
e Scheduler Design Class

o The scheduler design class consists of a main “Scheduler” object. The
scheduler object is responsible for taking a student as input and
scheduling the student. Inside of the scheduler object is a
multidimensional array of “TimeBlock” objects. The “Scheduler” object
passes the student to be scheduled into the appropriate “TimeBlock”
object, which then passes the student to be scheduled to one of its internal
“Section” objects (each “TimeBlock” object has an array of “Section”
objects). Each “Section” object maintains an array of students. The student
to be scheduled will be added to the “Section” objects array of students.
Finally, each “Student” object holds an array of “Song” objects.

ARIA
Scheduler Design Class

Scheduler

- days: Array TimeBlock
- num_days: Int
-num_time_blocks per_day: Int

+ Scheduler(num_days: int, num_time_blocks_per_day: int, num_concurrent_sections: int)
+ schedule_student(student: Student): Bool
+ ~Scheduler()

TimeBlock SchedulerAPl

- num_concurrent_sections: Int

: ; - student_form_id: nt
- sections: Array Section T maste

- student_master_form_id: Int
- teacher_form_id: Int
- teacher_master_form_id: Int

+ TimeBlock{num_concurrent_sections: Int)
+is_full(): Bool
+ schedule_student(student: Student)
- student_can_be_added(student: Student, section: Int) + SchedulerAPI()
+ ~TimeBlock]) *get_form_ids(): Array
+ get_festival_info(): Amray

1 + ~ SchedulerAPI()
0..*

Section

- type: String
- students: Array
- current_time: Int

+ Section()

+is_full() : Bool

+is_empty(): Bool

+ get_type(): Int

+ add student(student: Student): Bool

+ ~Section{)
1
0..*

Student Song
- first_name: String - Stri
- last_name: String - gamg Fr||thg
- songs: Array Song 1 o2 | uration:
- type: Int
- day_preference: Int + Song(name: String, duration: Int)
+ Student(first_name: String, last_name: String, type: Int, day_preference: Int) : gg—:ggg—gﬁgﬁgh {?'UIE:J
+ add_song(song_name: String, song_name: String): Void N gSEngﬂg_ X
+ get_type(): Int
+ get_day preference(): Int

e GUI Design Class
o The GUI design class relies on “Activator” and “Deactivator” objects in
order to correctly perform initialization and deinitialization correctly. The
“ARIA” object, which makes use of both the “Activator” and “Deactivator”
object, also requires a “Loader” object. The “Loader” object is responsible
for maintaining all of the actions and filters that are attached to
WordPress core. The “ARIA” object uses these objects in order to correctly

generate the GUI that the admin sees in the WordPress dashboard.

ARIA

GUI Design Class

Activator

- gravity_forms_version: Int
- wordpress_version: Int

Deactivator

- gravity_forms_version: Int
- wordpress_version: Int

+ Activator() + Deactivator()
+ activate(): Void + deactivate(): Void
+ ~Activator() + ~Deactivator()
1 1
activates
deactivates
1
ARIA Loader
- plugin_name: 5tring - actions: Array
- plugin_version: String - filters: Array
- loader: Loader
+ Loader()
+ ARIA[) + add_action(hook: String, component: Object,
- load_dependencies(): Void callback: String, priority: Int, accepted _args: Int)
- set_locale(): Void + add_filter(hook: String, component: Object,
- define_admin_hooks(): Void - > callback: String, priority: Int, accepted _args: Int)
- define_public_hooks(): Void 1 - add(hook: String, component: Object, callback:
+run(): Void String, priority: Int, accepted _args: Int)
+ get_plugin_name(): String + run()
+ get_version(): String + ~Loader()
+ get_loader(): Loader
+ ~ARIA()

e Competition Design Class

o The main object in this subsystem is the “CreateCompetition” object,
whose purpose is to house all of the functionality required for creating
competitions. To achieve this functionality, the “CreateCompetition”
object communicates directly with a “CreateMasterForms” objects (creates
backend databases needs for competition registration), a “TeacherUpload”
object (uploads a list of teachers to the current competition), and a
“CompetitionAPI” object (maintains a communal list of functions used by
all objects in this subsystem).

ARIA
Competition Design Class

CreateCompetition

- student_form_id: Int
- teacher_form_id: Int

+ CreateCompetition()

+ create_student_and_teacher_forms(confirmation: Int, form: Form,
entry: Entry, ajax, Array): void

- create_competition_form(): void

- add_default_address_inputs(): void

+ add_default_name_inputs(): void

+ add_checkbox_input(): void

- create_teacher_form(entry: Entry, volunteer_times: Array): void

- create_student_form{entry: Entry, teacher_names: Array): void

+ ~CreateCompetition()

1 1 1
1 1y 1
CreateMasterForms TeacherUpload CompetitionAPI

- student master form id: Int - student_master_form_id: Int - student_master_form_id: Int
-teacher master form id: Int - teacher_master_form_id: Int - teacher_master_form_id: Int
+ CreateMasterForms() + TeacherUpload() + CompetitionAPI()
+ create_student master_form(name: String): void + teacher_upload _field_id_array(): Array + publish_form(form_id: Int): Void
+ create_teacher_master_form{name: String}: void + teacher_create_upload_form(): void +remove_form(form_id: Int): Void
+ ~Creat_eMaster|EDrmsU_ + upload_teachers(entry: Entry, form: Form): + edit_form(form_id: Int): Vioid

+ upload_from_csv(csv_file_path: String, + ~CompetitionAPI()

teacher_master_form_id: Int): void

+ ~Teacher_Upload()

e Registration Design Class

o The “RegistrationFormHooks” object defines the functionality that is
required when students and teachers sign up for an NNMTA music
competition. To achieve this functionality, each “RegistrationFormHooks”
object communicates with a “RegistrationHandler” object (provides
ancillary functionality to the student/teacher sign-up process) and a
“RegistrationAPI” object (provides a communal list of functions that are
used throughout ARIA in regards to registration).

ARIA

Registration Design Class

RegistrationFormHooks

- student_form_id: Int
- student_master_form_id: Int
- teacher_form_id: Int
-teacher_master_form_id: Int

+ RegistrationFormHooks()

+ add_query_vars_filter(); void
+ ~RegistrationFormHooks(}

+ after_student_submission{entry: Entry, form: Form): void
+ before_teacher_render(entry: Entry, form: Form): void
+ after_teacher_submission(entry: Entry, form: Form): void

1

1 &

RegistrationAPI

- student_form_id: Int
- student_master_form_id: Int
- teacher_form_id: Int
-teacher_master_form_id: Int

+ RegistrationAPI()

+ get_music_form_id(): Int

+ competition_field_id_array(): Array

+ aria_teacher_field_id_array(): Array

+ aria_student_field_id_array(): Array

+ aria_student_master_field_id_array(): Array
+aria_teacher_master_field_id_array(): Array
+ ~ RegistrationAPI()

RegistrationHandler

- student_form_id: Int
- student_master_form_id: Int
- teacher_form_id: Int
-teacher_master_form_id: Int

+ RegistrationHandler()

+ send_registraion_emails(): void

- find_related_form_ids(): woid

+find_student_entry(student_master_form_id: Int, student_hash: String): Student
+ find_teacher_entry(teacher_master_form_id: Int, teacher_hash: String): Teacher
+ check_student_teacher_relationship(related_forms: Array, student_hash: String,
teacher_hash: String): Bool

+ get_teacher_prepopulate(related_forms: Array, teacher_hash: String): Array

+ get_student_prepopulate(related_forms: Array, student_hash: String): Array

+ ~RegistrationHandler()

e Music Design Class

o The “MusicManager” object defines all of the functionality that is needed

to upload and modify the music that belongs to the NNMTA.

ARIA
Music Design Class

MusicManager

- music: Array Song

+ MusicManager()

+ add_music_from_csv(): void

+ create_music_upload_form(): void
+ modify_upload_path(): void

+ music_field id_array(): Array

+ ~MusicManager()

e Document Design Class
o The “DocumentManager” object defines all of the functionality that is
needed to print all of the documents required by the NNTMA on music
competition days.

ARIA
Document Design Class

DocumentManager

- competition_id: Int
- competition_entries: Array

+ DocumentManager{competition_id: Int)
+ generate_documents(): void

- get_statistics(): void

+ ~DocumentManager()

e Statistics Design Class
o The “StatisticsManager” objects defines all of the functionality that is

needed to generate all of the statistics for the NNMTA.

ARIA
Statistics Design Class

StatisticsManager

- competition_id: Int
- competition_entries: Array

+ StatisticsManager{competition_id: Inf)
+ generate_statistics(): void
+ ~StatisticsManager()

10

Program Units
1. Create_competition_ activation
a. This function will create the form that can create new music competitions.
This function is called in "class-aria-activator.php" and is responsible for
creating the form that allows the festival chairman to create new music
competitions (if this form does not already exist). If no such form exists,
this function will create a new form designed specifically for creating new
music competitions.
b. Precondition: none
c. Postcondition: A new form for creating new music competitions will be
created.
d. Author: Ernest, Wesley
2. Create_teacher_and_student_forms
a. This function will create new registration forms for students and parents.
This function is responsible for creating new registration forms for both
students and parents. This function will only create new registration forms
for students and parents if it is used ONLY in conjunction with the form
used to create new music competitions.
b. Precondition: entry in create competition submitted.
c. Postcondition: student and teacher forms for a competition is made.
d. Author: Ernest, Kyle, Wesley
3. Create_competition_form
a. This function will create a new form for creating music competitions. This
function is responsible for creating and adding all of the associated fields
that are necessary for the festival chairman to create new music
competitions.
b. Precondition: none
c. Postcondition: The forms necessary will be created for a competition.
d. Author: Kyle
4. Add_default_address_inputs
a. This function is responsible for adding some default address field values.
This function is used to pre-populate the address fields of a gravity form
with some generic, default values.
b. Precondition: field initialized
c. Postcondition: inputs will be added to an address field
d. Author: Kyle
5. Add_default_name_inputs
a. This function is responsible for adding default name inputs to a name
field.

11

b. Precondition: field initialized
c. Postcondition: inputs will be added to a name field
d. Author: Renee
6. Add_checkbox_input
a. This function is responsible for adding checkbox inputs to a checkbox
field.
b. Precondition: field initialized
c. Postcondition: inputs will be added to a checkbox field
d. Author: Renee
7. Aria_create_teacher_form
a. This function will create a new form for the teachers to use to register
student information. This function is responsible for creating and adding
all of the associated fields that are necessary for music teachers to enter
data about their students that are competing.
b. Precondition: a competition is being created.
c. Postcondition: a form for teacher registration is created.
d. Author: Ernest
8. Create_student_ form
a. This function will create a new form for student registration. This function
is responsible for creating and adding all of the associated fields that are
necessary for students to enter data about their upcoming music
competition.
b. Precondition: a competition is being created.
c. Postcondition: a form for student registration is created.
d. Author: Ernest
9. After_student_submission
a. This function will be the hook that is called after a student submits their
information for a new music competition. This function will take all of the
information that the student submitted and update corresponding data in
the student form, the student master form, and the teacher master form.
b. Precondition: a student has submitted their registration.
c. Postcondition: an entry in teacher database and student database will be
created and an email to their piano teacher will be sent.
d. Author: Wesley, Kyle
10. Before_teacher render
a. This function will be the hook that is called when navigating to the teacher
registration page. The function will either let the user see the form or
navigate to the home page if the link used to navigate to the page was
correct or incorrect.

12

b. Precondition: none
c. Postcondition: the form is rendered or the user is navigated to the
homepage.
d. Author: Ernest, Renee
11. After_teacher_submission
a. This function will be the hook that is called after a teacher submits
information for a particular student. This function will take all of the
information that the teacher submitted and update corresponding data in
the teacher form, the student master form, and the teacher master form.
b. Precondition: the teacher is submitting a form.
c. Postcondition: the corresponding entries in the teacher database and
student database will be created.
d. Author: Ernest, Wesley
12. Add_query_vars_filter
a. This function will expose the new, custom query variables to WP_Query.
In order for ARIA's query hash method to work, specific query vars (the
query vars that will be added to URLs) need to be added to the public
query variables that are available to WP_Query. This function is
responsible for adding these query vars to the $query_vars property of
WP_Query.
b. Precondition: none
c. Postcondition: Wordpress will be able to detect values in the url.
d. Author: Ernest
13. Create_student_master_ form
a. This function will create the form that will be the source of truth for a
certain competitions students. This function is called in
"class-aria-create-competition.php" and is responsible for creating the
student master form. This form is the absolute source of truth for the
students of any given competition. Entries in other forms will update
entries in this form.
b. Precondition: a competition is in the process of being created.
c. Postcondition: A form will be created to hold student information.
d. Author: Ernest, Renee, Wesley
14. Create_teacher_master_form
a. This function will create the form that will be the source of truth for a
certain competitions teachers This function is called in
"class-aria-create-competition.php" and is responsible for creating the
teacher master form. This form is the absolute source of truth for the

13

b.
C.
d.

teachers of any given competition. Entries in other forms will update
entries in this form.

Precondition: a competition is in the process of being created.
Postcondition: A form will be created to hold student information.

Author: Ernest, Renee, Wesley

15. Add_music_from_csv

a.

b.
C.
d.

This function will parse the contents of the csv file and upload content to
the NNMTA music database. Using the csv file that the user has uploaded,
this function will parse through the music content for each song and add it
to the NNMTA music database.

Precondition: none

Postcondition: the database will be filled with new music entries.

Author: Kyle, Renee, Wesley

16. Create_music_upload_form

a.

b.
C.
d.

This function is responsible for creating the NNMTA music uploading
form if it does not exist. This function is intended to be used in the event
where the form for uploading music does not previously exist. If no such
form exists, this function will create the form used for uploading music.
Precondition: none

Postcondition: the form for adding music to a the database is created.
Author: Kyle, Wesley

17. Create_nnmta_music_form

a.

b.

C.

d.

This function is responsible for creating the NNMTA music form if it does
not previously exist. This function is intended to be used in the event
where the festival chairman tries to upload music to the NNMTA database
but no such form exists for adding music.

Precondition: none

Postcondition: The NNMTA music form will be created.

Author: Renee, Wesley

18. Remove_all music_from_ nnmta_database

a.

b.

C.

This function will remove all of the music from the NNMTA music
database. This function was created to support the scenario when the
festival chairman needs to update the music in the NNMTA music
database. In order to do this, all of the existing data is removed from the
database prior to adding all of the new data. This ensures that the new
data is added appropriately without accidentally adding old, possibly
unwanted music data.

Precondition: none

Postcondition: the music database will be cleared.

14

d. Author: Kyle, Wesley
19. Modify_upload_path
a. This function will change the default file path for uploaded files. In order
to upload music from a file, we need to know where the music file resides.
This function will set a pre-determined file path so the music data can be
read from.

e

Precondition: none
Postcondition: file uploads will upload to a specified path.
Author: Kyle, Renee
20. Get_create_competition_form_id

a. This function will find the ID of the form used to create music
competitions. This function will iterate through all of the active form
objects and return the ID of the form that is used to create music
competitions. If no music competition exists, the function will return -1.
Precondition: none

oo

e

Postcondition: none
. Author: Wesley
21. Get teacher _upload_ form_id

a. This function will find the ID of the form used to upload music teachers.
This function will iterate through all of the active form objects and return
the ID of the form that is used to upload music teachers. If no such form
exists, the function will return -1.
Precondition: none

oo

e

Postcondition: none
. Author: Renee
22, Get_song_upload_form_id
This function will find the ID of the form used to upload songs. This
function will iterate through all of the active form objects and return the
ID of the form that is used to upload music to the NNMTA music database.
Precondition: none
Postcondition: none
. Author: Kyle
23.Get_nnmta_database_form_id
a. This function will find the ID of the form used as the NNMTA music
database. This function will iterate through all of the active form objects
and return the ID of the form that is used to store all of the NNMTA music.
b. Precondition: none
c. Postcondition: none
d. Author: Wesley

oo

®

=

e

~

15

24.Send_registration_emails

a.

b.
C.
d.

This function is called after a student submits their registration and sends
an email to their teacher giving them information on how to finalize the
registration of their students.

Precondition: Student Submitting their registration

Postcondition: Teacher is sent an email.

Author: Wesley

25.Find_related_forms_ids

a.

b.
C.
d.

This function will return an associative array that maps the titles of the
associated forms in a music competition (student, student master, teacher,
and teacher master) to their respective form IDs.

Precondition: none
Postcondition: none
Author: Wesley

26.Find_student_entry

a.

b.
C.
d.

This function will search through the student-master form and check to
see if a particular student exists. If a student exists within the student-
master form of a particular competition, then the entry for that student
will be returned. Otherwise, if no such student exists, the function will
return false.

Precondition: none

Postcondition: none

Author: Ernest

27. Find_teacher_entry

a.

b.

C.

d

This function will search through the teacher-master form and check to
see if a particular teacher exists. If a teacher exists within the teacher
master form of a particular competition, then the entry for that teacher
will be returned. Otherwise, if no such teacher exists, the function will
return false.

Precondition: none

Postcondition: none

Author: Ernest

28.Check_student_teacher_relationship

a.

b.

C.

d.

This is a function that is used to check if a student is assigned to a teacher.
Precondition: none

Postcondition: none

Author: Ernest

29.Get_teacher_pre_populate

16

° po T

This is a function that is used to get the pre-population values for a specific
teacher to be rendered on the teacher registration form.

Precondition: none

Postcondition: none

Exception: the teacher doesn't exist.

Author: Ernest

30.Get_teacher_pre_populate

o

po T

e

This is a function that is used to get the pre-population values for a specific
student to be rendered on the teacher registration form.

Precondition: none

Postcondition: none

Exception: The student doesn't exist.

Author: Ernest

31. CalculateSig

a.

e v

oL

This is a front-end function as part of the teacher registration process used
to calculate the signature for the URL used in GET requests sent by the
forms.

Precondition: Crypto script is loaded.

Postcondition: none

Author: Renee

32.Get_songs

a.

b.
C.
d.

This is a front-end function as part of the teacher registration process
which retrieves all of song information specifically for the students level
using a GET request to the Gravity Forms Web API.

Precondition: Student level is known, Gravity Forms is functioning.
Postcondition: Song information is loaded.

Author: Renee

33.Store_periods

a.

b.

C.

d.

34.Load_.

a.

This is a front-end function as part of the teacher registration process
which stores all of the possible time periods during the song selection
process.

Precondition: Song periods have been loaded into one of the song's
dropdown.

Postcondition: Song periods are stored into an array for later access.
Author: Renee

composers

This is a front-end function as part of the teacher registration process
which populates the composer dropdown menu with all composers from
the selected period.

17

b. Precondition: Period is selected.
c. Postcondition: Composer dropdown is populated.
d. Author: Renee
35. Load_periods
a. This is a front-end function as part of the teacher registration process
which restores all song periods and is used for the mutual exclusion logic
of period selection.
b. Precondition: none
c. Postcondition: All periods are restored to specified dropdown.
d. Author: Renee
36.Get_Music_Form_ID
a. This is a front-end function as part of the teacher registration process
which uses a GET request to retrieve the form ID number of the associated
music database form for the current competition.
b. Precondition: Current competition ID is known.
c. Postcondition: Music form ID is known.
d. Author: Renee
37. toTitleCase
a. This is a front-end function as part of the teacher registration process
which reformats the given string into title case format for consistent
presentation.
b. Precondition: none
c. Postcondition: none
d. Author: Renee
38.Schedule_student
a. This function will schedule a student depending on which day they had
requested when they registered for a competition.
b. Precondition: the student has yet to be scheduled for the given
competition.
c. Postcondition: the student has been scheduled according to their request
and the student’s parents are emailed with the student’s schedule time.
d. Author: Wesley, Kyle
39.Add_student
a. If the current section matches the type of student competing (traditional,
master-class, non-competitive, or command performance) and the current
section is not full, then the incoming student object passed as a parameter
will be added to the list of students competing in the current section.
b. Precondition: none

18

c. Postcondition: the student has been scheduled to a given time section for
the competition.

d. Author: Wesley, Kyle

40.Student_can_be_added

a. This function is solely meant to simplify the condition that checks to see if
a student can be added to a section in the function schedule student.

b. Precondition: none

c. Postcondition: the student has been given permission or has been rejected
from the given time section.

d. Wesley, Kyle

19

Detailed Design

CreateCompetition

Precondition: Music must be uploaded
Postcondition: Chairman will successfully
create a competition

CreateCompetition [+

Is Music
Uploaded

No
—)[Uplaadrﬂusiclnfa]—){ EditMusicInfo }

Yes
L A
%ownlaadnﬂusiclnm
r
L 4 ¥
CreateStudentMasterForm CreateStudentForm CreateTeacherForm CreateTeacherMasterForm

®

Figure 1: The activity diagram depicts the flow of activity for the process of creating a
competition. If music data has not been uploaded, the chairman will be able to upload,
edit, and download music. Once music data has been uploaded, the student and teacher
forms are created along with the student and teacher master forms. Upon completion of

these tasks, the activity terminates.

20

Precondition: Competition was created
Postcondition: Student registered for competition

RegisterStudent l

[SuDmitStudentRegistratian }

PayRegistration

h 4

No

%[CreateTeacherMasterEntry } {CreateStudentMasterEntr-; }

Is teacherin

SendEmailToTeacher
JeacherMaster

AddStudentTeacherRelationship
ToTeacherMasterEntry

@

Figure 2: The above activity diagram depicts the student registration process. Once the
student submits the registration form, they must pay for the competition. Upon
completion of this, an email is sent to the teacher notifying them that one of their
students has registered. Additionally, an entry in the teacher master is created if
necessary, and the relationship is added into the teacher master entry. An entry in the
student master form is also created simultaneously. Upon termination of all these flows,
the activity terminates.

21

RegisterTeacher

Precondition: Competition was created
Student Registered

Postcondition: Teacher fully registered student

o the hash values in the url for the form
correspond to a teacher student
relationship?

No

W N
RedirectToHome FenderForm
M

EuhmitTeacherR egistratina

GpdateTeacherr-.*lasterRecnr:D (UpdateStudentMasterF{ecnrcD

| ®

Figure 3: The above activity diagram depicts the teacher registration process. To
begin, the hash values are validated. If the hash values are incorrect, then the user is
redirected and activity terminates. Otherwise, the form is rendered with some
pre-populated values. After the teacher submits the form, the entries in the teacher and
student master database are updated.

22

Document Creation

Precondition: Competition must be made. .
Students and teachers must register.

Postcondition: Documents will be created based

on precondition information

Competition
. Sheet)
Mo Competition Cerificate
 ———
scheduled?
fes
k4
{GetSchedulelnfﬂrmatian } { Get Student Information } { Get Student Information }
v
-
GenerasteScthedule } [GenergLeJLtJdging } {GenerateRgﬁm;\ssignment] { GenerateCertificates }
b

Delivery
method

Email Documents }7 4{ Print Documents]
Emall Print

Generate
mare docs?

fes

Mo

Figure 4: The activity diagram above depicts the process of document generation. The
chairman is able to select which type of document to generate. If they select a
competition sheet, then a competition must already have been scheduled. If so, the
information for the competition schedule and students are fetched. With this
information, necessary documents are generated. If the chairman selects a certificate
type to be generated, then student information is fetched and certificates are generated.
After document generation, the chairman selects whether to print or email the
documents. After this is completed, the chairman is given the option to generate more
documents. If they do not wish to generate more documents, activity terminates.

23

Data Design

e Music Data

o All of the NNMTA music data is held in a centralized database and consists
of the following data:

Name
Composer
Level
Period

Catalog number (defined by NNMTA).

e Competition Data
o All of the competition data for an NNMTA music competition is held in a
centralized database (per competition) and consists of the following data:

Name

Start date

End date

Location

Address

City

State

Zip

Country

Student registration start date
Student registration end date
Teacher registration start date
Teacher registration end date
Volunteer times

Teacher Data (path to csv file)
Number of traditional sections
Number of masterclass sections
Number of non-competitive sections
Section length (minutes)

Number of judges per section
Number of command performances
Command performance start date
Command performance start time
Theory score needed for competition

24

e Student Data
o All of the student data is held in a centralized database and consists of the
following data:

m Parent name
Parent email
Student name
Student birthday
Teacher name
Day available
Preferred command performance time
First period
First composer
First selection
Second period
Second composer
Second selection
Theory score
Competition format
Timing of piece
Student hash value
Student level

e Teacher Data
o All of the teacher data is held in a centralized database and consists of the
following data:
m Students (that belong to the given teacher)
Name
Email
Phone
Teacher hash value
Student hash values
Volunteer preference
Volunteer time
Judging option

25

User Interface Design
ARIA's main user interface deals with the creation and management of various forms
and web pages. Important aspects of these are described in the figures below.

ARIA: Create a Competition

Welcome! Please submit information for all of the fields in the form
below in order to create a new NNMTA music competition.

Competition Name
My Competition
Competition Start Date

Competition End Date

Competition Location

Street Address

Address Line 2

Figure 5: When ARIA is activated, a WordPress page with this form is created. This
form allows the festival chairman to create and configure a new music competition.

26

ARIA: Create a Competition

Welcome! Please submit information for all of the fields in the form
below in order to create a new NNMTA music competition.
Competition Name

My Competition
Competition Start Date

03/23/2016

Competition End Date

-Mar v 2016 '.

=10} Mo ™ WE ™ FR SA

1 2 3 4]
Bl .8 9 (o 11 | 12
13 14 15 | 16 17 18 | 19
20 21 22 |23 |24 | 25 | 26

27 28 29 30 31

Figure 6: One of the configuration options is the competition start and end dates. The
festival chairman can enter the date in text form by clicking in the box, or the chairman
can select the date by clicking the calendar icon to the right of the box.

27

CSV Teacher File

Browse computer for a CSV file of teachers that will be participating in this

music competition.

Choose File | No file chosen

Open File

| |+ [@renee | ARIA_Plugin | includes | test-files|

Places Name 4 Size Modified
Q search
@ Recently Used |] Upper_Levels.csv 37.2kB 03/08/2016
& renee

@ Desktop

! File System

Cancel Open

Figure 77: When creating a competition, the chairman can select a list of music teachers
with their emails prepared in CSV format. By selecting the "Choose File" button, the
chairman can browse their computer for this file, which will be added to the data list of

teachers participating in the competition.

Volunteer Time Options for Teachers

e.g. Saturday (10am-4pm), Either Saturday or Sunday, etc.

Saturday Morning ® 0O
Saturday Afternoon ® 0O
Sunday Morning ®0e

Figure 8: The chairman can create options for the teachers to sign up for. These
options can be added by typing their names. To add another option, the "+" is clicked.
To delete an option, the "-" is clicked. This allows the chairman to add as many options

as needed for the competition.

28

ARIA: Create a Competition

Congratulations! A new music competition has been created. The
following forms are now available for students and teachers to use for
registration:

My Competition Student Registration was published.

My Competition Teacher Registration was published.

Figure 9: Once the chairman submits the "Create a Competition" form, the
confirmation message is displayed. The student and teacher registration forms are
created dynamically, added to the list of pages, and published to the WordPress site. The
links for these pages are provided to the festival chairman for reference.

29

My Competition Student Registration

Parent Name

Jane Doe
First Last
Parent's Email

jane@gmail.com
Student Name *

Please capitalize your child's first and last names and double check the spelling.
The way you type the name here is the way it will appear on all awards and in
the Command Performance program.

Jonny Doe
First Last
Student Birthday

03/01/2003

Figure 10: Once the forms are created and published, the public can access the form
through the NNMTA website. Teachers can register their children by entering necessary
information in the text boxes as shown.

30

Piano Teacher's Name *

Please select your teachers name from the drop-down below.

wesley kepke -~

If your teacher's name is not listed, enter name bhelow.

Piano Teacher's Name *

Please select your teachers name from the drop-down below.

wesley kepke -

wesley kepke
fred harris

kyle lee

renee iinuma
ernest landrito 1 Days (check all available times)

There is no guarantee that scheduling requests will be honored.

name is not listed, enter name below.

v Saturday
Sunday

Preferred Command Performance Time (check all available times)

Please check the Command Performance time that you prefer in the event that
your child receives a superior rating.

¢ Thursday 5:30
¢ Thursday 7:30

Figure 11.1 and 11.2: Parents can select their child's piano teacher from the dropdown
menu which was populated by the filed uploaded by the festival chairman. As shown in
Figure X.1, if the student's teacher is not listed, the parent can enter the teacher's name
instead. Additionally, there are other preferences which are selected with checkboxes.

31

NNMTA Music Competition - Registration = E
Inbox x Mevada x riinuma x
7?7 WordPress <wordpress@aria.cse.unr.edus Mar 14 (1 day ago) - v

to rtinuma [+

Congratulations. Cne of your students has registered for an NNMTA music competition.
Please click on the following link to finish registering your student:

hitp:/faria.cse unr edu/reneed 14-teacher-reqistration/?teacher_hash=
f1a1130dbaebaac 1dd3d9265fdbec 0898 student _hash=
09543328264829b61172ed080%e62322

Figure 12: Once a student is registered, an email is automatically sent to that student's
teacher. This email contains a message notifying them that one of their students has
finished registering. It also contains a unique link which will take them to the teacher's
registration page for that specific student.

«ARIA_Rene: x ' [ARIA: Createa Comp x ' || My Competition Tea x ' [WordPress»Error % | || My Competition Tea: x ! [My Competition Tea x

[1 192.168.245.140/my-competition-teacher-registration/?teacher_hash=Ffake&student_hash=erroi|

You cannot access this form. Check your email to get the correct link to access this form correctly.

Figure 13: If someone tries to access the teacher registration page without the correct
URL, they are shown an error message and not allowed to register. This allows that only
teachers with the correct URL are able to access.

32

[Entries <ARIA_Rene: x v] ARIA: Create a Comp x 1 5 My Competition Tez: x N | wWordPress»Error % ! - My Competition Tea x § §

-‘* @0 ARIA Renee # Customize O 1 B + New ¢ EditPage

ARIA_Renee
Just another WordPress site
My Competition Teacher
Search ... Registration
RECENT POSTS My Competltlon Teacher Rengtl‘athI‘l
Hello world! Name
wesley kepke
First Last

Figure 14: If the URL is correct, the teacher's are taken to the teacher registration page
for the competition. Based on the hashes in the URL, the form is prepopulated with
important fields such as the teacher's name, student's name, and student's level. This
makes it so the teacher does not have to manually enter this information.

33

Student Level
? v
Song 1 Period

Classical v
Song 1 Composer
Select Composer... ~
Song 1 Selection

Song 2 Period

Baroque v

Romantic
Contemporary

Song 2 Selection

L

Figure 15: Teachers are responsible for selecting the two songs which their student will
be performing. Since they must be from two different periods, if the first song is from
the Classical period, then this is removed as an option for the second song's period. This
eliminates the aspect of human error of selecting two songs from the same period, which
is not allowed.

34

Student Level Student Level
7T v 7 v

Song 1 Period Song 1 Period
Classical v Romantic v

Song 1 Composer

Select Composer... ¥ Select Composer...

Select Composer... Select Composer...

Albeniz, M. Barden

Bach,CPE Beach

Burgmuller

Cimarosa

Clementi Concone

Haydn Granados

Kirnberger Grieg

Mozart, W.a. Macdowell

Reinagle Mendelssohn

Schubert Miaskovsky

[Schumann
Tchaikowsky

Song 1 Composer

Figure 16.1 and 16.2: Once the song's period is chosen, a list of composers from that
period are dynamically populated. If the teacher changes the period, the list of
composers is repopulated with the composers from the new period. The composers
displayed are the composers with only songs approved for the student's level.

35

Student Level
7o

Song 1 Period
Romantic v

Song 1 Composer

Burgmuller v
Song 1 Selection

Select Song... v
Select Song...

Allegro Agitato In C Minor
Andante In D

Rondo Ala Turca
D"UIF‘GUII:T'UUCI.—

T

Song 2 Selection

T

Figure 17: Once the song's composer is chosen, the list of songs for that composer are
populated. These songs are specific to the student's level, so there will be no error of a

student performing a song which is not approved for their level. If the composer
changed, then the list of song options is repopulated with songs for the new composer.

is

36

Glossary of Terms (New Terms)
e Chairman
o The person in charge of scheduling and managing festivals and music
competitions.
e Master Class
o A class given by an expert of a particular discipline to a student of that
discipline.
e Opus Number
o A separate composition or set of compositions by a particular composer,
usually ordered by date of publication.
e Proctor
o The person who manages each section during the competition. This
person would make sure the competition runs smoothly as possible.
e Theory Score
o A score that the students receive after taking a theory exam which is
required for festivals.

References
e Problem-domain book
o Professional WordPress Plugin Development
Brad Williams - Ozh Richard - Justin Tadlock - Wiley Pub. - 2011
o This book shows the methods used in wordpress in order to create
self-hosted-blogs and sites, as well as the components used to make the
website function. This book has advanced plugin development guides and
gives documentation for professional practices used in wordpress
development. The book teaches how to utilize hooks, store settings, create
translation files, secure plugins, set user roles, integrate widgets, work
with JavaScript and AJAX, and create custom posts. The book is written in
a practical way in order to lead the reader to development.
e Journal papers, conference papers, and technical reports
o A Growth Model for Form Generation
m Rosenman, M. A., "A Growth Model for Form Generation Using a
Hierarchical Evolutionary Approach." (1996). Computer-Aided
Civil and Infrastructure Engineering, 11: 163-174. doi:
10.1111/j.1467-8667.1996.tb00320.x
m This paper discusses the approach and model one can use to design.
The paper argues that the evolutionary approach to design can be
used in conjunction with the generate and test approach. The paper

37

argues that the evolutionary approach is good for when there are
relationships between complex design elements which may be
dynamic. This paper shows how the evolutionary approach can be
used for synthesis and evaluation during the design process. These
claims are shown throughout this paper through the context of
designing a house.

o Awards, Success and Aesthetic Quality in the Arts

m Ginsburgh, Victor. "Awards, Success and Aesthetic Quality in the
Arts" (2003). The Journal of Economic Perspectives, Volume 17,
Number 2.

m In this paper, Victor Ginsburgh analyzes the effect that expert
opinion on a subject matter has on the success of a product. This is
done by analyzing the success of works using awards such as the
Oscars, Golden Globes, and the Booker Prize and their economic
impacts as examples. Furthermore, Ginsburgh analyzes the effect of
rankings of pianists in the The Queen Elisabeth Piano Competition
and on their presence in catalogs. Ginsburgh concludes that there is
a correlation between awards and success and also that awards are
bad predictors of fundamental quality or talent.

o Automated creation of a forms-based database query interface

m Jayapandian, Magesh and Jagadish, H. V. "Automated creation of a
forms-based database query interface" (2008) Proc. VLDB Endow.
1, 1 (August 2008), 695-709.

m This paper looks at the design of a forms-based interface. An
interface is only able to express a limited set of possible queries on a
database. An interface which can represent all possible queries to a
database is the ideal interface for a database. This paper looks to
maximize an interface's ability to represent the needs of a user
while being bound by the number of forms used and the complexity
of the forms. Given the schema of a database, this paper creates an
automated method for generating forms for the database.

o Expressive query specification through form customization

m Jayapandian, Magesh and Jagadishm H. V. "Expressive query
specification through form customization" (2008). In Proceedings
of the 11th international conference on Extending database
technology: Advances in database technology (EDBT '08). ACM,
New York, NY, USA, 416-427.

m This paper discusses the form as an easy-to-use interface for users
to use to query a database. The paper seeks to solve the fact that in

38

general forms can only express a limited amount of queries since
the set of the queries expressed by the form is bound by expertise
and vision of the developer at the time the form was created. This
paper proposes a method for users to modify a form to express a
missing query. This is done by using a form to generate an
expression language that creates the queries.

o Consistency in piano performance evaluation

m Wapnick, J., Flowers, P., Alegant, M., & Jasinskas, L. "Consistency
in piano performance evaluation" (1993). Journal of Research in
Music Education, 41(4), 282-292.

m This paper shows the analysis of an experiment performed where
Eighty pianists each listened to 21 trials of solo piano music. Trials
consisted of two different performances of the same excerpt, and
the same music was played on all trials for any given subject. The
subjects were to specify which of the two trials they preferred. The
results of the test showed that the use of a number scoring system
did not improve the consistency of the subjects' preferences.
Subjects who used a rating scale were more consistent when using a
non musical scale.

o Marshall University Sonatina Festival & Competition

m Alves, Julio Ribeiro, "Marshall University Music Department
Presents the Marshall University Sonatina Festival & Competition"
(2011). All Performances. Book 426.
http://mds.marshall.edu/music perf/426

m This document shows an appropriate example of a music schedule
that is produced. The document is of a music festival and
competition presented at the Marshall University Sonatina. The
document shows the time a piece was played, the piece that was
played, the performer, and the adjudication of the performance.
The overall schedule of events was shown with descriptions of each
event that was happening throughout the event. The biography of
both of the adjudicators of this event was also included.

o System and Method for Making Staff Schedules as a Function of Available
Resources as Well as Employee Skill Level, Availability and Priority

m Randall K. Fields, Paul R. Quinn, Todd Blackley, "System and
Method for Making Staff Schedules as a Function of Available
Resources as Well as Employee Skill Level, Availability and
Priority"

39

http://mds.marshall.edu/music_perf/426

This patent seeks to generate an optimal staff schedule based on
available resources, employee skill level, availability, and priority.
This optimal staff schedule is generated for personnel at a remote
location by applying a central location policy to a remote location.
This is done using a database, policy, labor requirements, tasks to
be performed, skills for each task, resources needed, and employees
with start and stop time. Upon request to create a schedule, the
system and method selects the tasks to be performed and generates
an optimized display of the required schedules.

o Demographic and Sponsorship Considerations for Jazz and Classical
Music Festivals

Steve Oakes, "Demographic and Sponsorship Considerations for
Jazz and Classical Music Festivals",
http://www.tandfonline.com/doi/abs/10.1080/714005121
This article shows that awareness of demographic information of
the audience of a music festival is needs to be increased and
enhanced. This is done by studying classical and jazz festivals held
in the UK and comparing their audiences. The appropriateness of a
strategic fit between the demographics of music festival patrons ,
sponsoring organizations target segments. This information may
show that there can be an increased demand for cross-selling of live
entertainment services. Furthermore, the factors that impact the
recall of festival sponsors are studied.

40

Contributions of Team Members

Team Member Time (Hours) Activity

User Interface Design

High Level Behavioral Diagram
Detailed Design

Program units

Renee Iinuma 8

Abstract

Introduction

High Level Structural Diagram
Design Classes

Data Design

Program Units

Wesley Kepke 8

Program Units
Detailed Design
e References

Ernest Landrito 8

e Detailed Design
Glossary of Terms
e Data Design

Kyle Lee 8

41

